Helmut Dittmann reaches physics and
mathematics at a “Gymnasium” in
Niirnberg (Germany). He holds a Ph.D.
from the University of Erlangen-Nirnberg
and is the author of several textbooks on
mathematics and computers in physics. ~

Simulated
Holograms

A Simple Introduction to Holography

By H. Dittmann and W.B. Schneider

Hologmphy is a well-known method of generating three-dimensional
pictures, and even students are accustomed to this new imaging process.
Influenced by their experiences and observations in connection with holograms,
young people are very interested in the physical background of holography.
Therefore we were looking for a method of teaching holography from a very
elementary point of view.

The main idea of this project is to generate holograms of simple object
stractures, i.e., one, two , three,...etc. point sources arranged in a plane or in space,
which provide a step-by-step introduction to the holographic method. Unfortu-
nately, the production of holograms for such simple object structures is rather
difficult, especially if only standard demonstration equipment is available. Fur-
thermore, teaching the holographic recording and reconstruction process requires
prerequisites that generally are not given in elementary physics courses. To
overcome these difficulties we use a computer and a dot matrix printer to simulate
the holographic recording process.

Production of Simulated Holograms

Step 1: Superposition of waves

As our first step we calculate the superposition S of a plane reference wave and
the respective spherical object wave(s) in the hologram plane (see Fig. 1). For the
sake of simplicity we use the following approximations and assumptions:

s From the phasor diagram in Fig. 2 for the superposition § of the plane
reference wave and one spherical object wave with amplitudes Ay and 4,
respectively, itis evident that for 4y » A the magnitude of § can be expressed
as the projection of S onto A,. In practice we found that Ay /A, 2 3 is already
a good approximation.

s The amplitude of the spherical object wave depends on 7, the distance
between the point source Z and the hologram point P(x,y) (see Fig. 1). We
assume the amplitude to be constant in the hologram plane, which is justified
for r larger than the hologram dimensions.

s Weneglect the time dependence in the wave equation and choose the phase
of the reference wave such that its amplitude is maximal in the hologram
plane,

Considering these approximations and assumptions, the superposition S, e.g.,

of a plane and a spherical wave at the point P(x,y) in the hologram plane (see Fig.
1) can be written in the rather simple form:
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S(x,y) = Ag + A, cos (2rr1/A) §)]

where A is the wavelength and r; = (@®+ P+ y2)1/ 2 The object wave is starting
at 2(0,0,-a).

For more point sources arranged somehow in space, the respective superposi-
tion is obtained in a similar way. For example, in the case of two point sources at
Z,(x0,0,-a) and Z,(-x3,0,-a) in the x, y-plane parallel to the hologram plane, the
superposition is given by:

S(x,y) = Ag+ Aycos(2rry/A) + Ay cos (2rra/A) @)

with ry = [02 +(x + xo)2 + yzllfz, ry = [a2 +(x- Jc(,)2 + yz]l*'z, and x, being the
displacement in x-direction.

Step 2: Representing S on the monitor screen

S(x,y) is a continuously varying function that cannot be represented on the
monitor screen or on the printer sheet in a direct way because in both cases only
a “digital” representation is possible: either a dotis printed or it is not. To overcome
this difficulty we describe S(x,y) by the respective dot density. For this purpose the
mumber of dots per unit area is chosen proportional to S. In addition the dots have
to be randomly distributed in order to avoid additional regular structures in the
simulated holograms.

To fulfill these two conditions, we choose the probability of printing a dot
proportional to S(x,y) [for A; = 3 and A = 1 in Eq. (1), for example, the respective
probability is S/4] and a dot is printed when a random number between 0 and 1 is
smaller than the respective normalized value of S as indicated in the following
BASIC program line:

IF RANDOM < S(x,y)/4 THEN PLOT P(x,y).

Z( 0,0,—a)

Fig. 1 Geometry for the simulation. Z(0,0,~a): point source focated on the z-axis; P (x.y):
point In the hologram plane; r: distance between Z and P,
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Fig. 2 Phasor diagram representing the superposition S of two
waves with the amplitudes Ao and 4+ and the phase shift «.

For S(x,y)/4 = 1 the probability of printing a dot is rather
high, but it is still possible that the respective random number
is larger than S/4 and that the dot is not printed. This apparent
error is compensated over a larger area. It can be proven that
the number of dots per unit area is proportional to S.
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Fig. 3 Results of the simulation for some representative point
source configurations (plane reference wave). (a) One point
source at a finite distance to the hologram plane. (b) Two point
sources located on a plane parallel to the hologram plane at a
finite distance to the hologram plane. (¢) Two point sources lying
on a stralght line normal to the hologram plane at different
distances to the hologram plane. (d) Three-dimensional arrange-
ment of four point sources (tetrahedron). (e) One point source
at infinity.
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During our calculations all lengths are expressed in an
arbitrary unit LU, which is determined by the minimum dot
separation; LU = 0.3 mm for our printer. Good results are
obtained for @ ~ 5000 LU, A =~ 2 LU, and x; = 100 LU.

Figure 3 represents the results of the simulation for some
representative examples. In all cases we assumed a plane
reference wave. Figure 3a shows the result for one point
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source (sphencal object wave). This pattern (Fresnel zone
structure) is the basis of all holograms. 1-3 1t differs from
conventional Fresnel zone plates only in having gradual
transitions between dark and light zones instead of abrupt
changes. It proves that the obtained intensity distribution is
sinusoidal, which is important for the reconstruction process
(see Step 4).

In the following examples the calculation is restricted to
apart of the hologram plane in order to get higher resolutions.

Fig. 4a.

Fig. 4. Representative examples of the reconstructed images
in the case of: (a) The grating pattern in Fig. 3e (point source at
infinity). (b) and (c) The pattern corresponding to a tetrahedron
in Fig. 3d for different focusing and viewing conditions. Since
the “grating-like” structure of the holograms is sinusoidal, be-
sides the zero order only the first ditfraction order appears
during the reconstruction. The bright spotin the center belongs
to the zero diffraction order and corresponds to the point source
at infinity of the plane reference wave. In Fig. 4a we focused on
infinity, therefore the images of the point sources placed at
infinity are In focus. In Figs. 4b and ¢ we focused on the
tetrahedron arranged at a finite distance to the hologram plane.
In the +1st diffraction on the right side of the central spot the
image of the tetrahedron is in focus and on the left side, In the
-1st diffraction order, it is out of focus and is responsible for the
speckle structure. The central spot—now out of focus—appears
in an enlarged form,

Fig. 4b.

Fig. 4c.
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Figure 3b illustrates the result for two point sources located
in a plane parallel to the hologram plane. It shows two
overlapping Fresnel zone structures. Figure 3¢ represents the
result for two point sources located on a straight line vertical
to the hologram plane at different distances. The respective
pattern is a system of two concentric ring structures. Figure
3d shows the pattern in the case of a simple three-dimensional
object. It consists of four point sources arranged like a
tetrahedron—three points in a plane paralle] to the hologram
plane and one outside of this plane. With the knowledge of
the pattern in Figs. 3a to 3c it is possible to recognize the
respective arrangement of the points from the pattern itself.
Figure 3e illustrates the result in the case of one point source
located at infinity (one plane object wave). The result is a
grating structure.

For an introductory course, other point-source configura-
tions are also useful. Even the dependence on the amplitude
of the object waves can be simulated. The superposition of a
cylindric object wave and the plane reference wave is helpful
to explain the transition from a grating to a Fresnel zone
structure.

The examples in Fig. 3 are obtained with the screen
resolution of about 600 x 400 dots, This resolution is not
sufficient to get good results after minification, but it is more
suited for reproduction. Good holograms were obtained for
a resolution of about 3600 x 2400 dots. For this purpose we
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split the chosen hologram sector into 36 parts, calculated the
superposition of the waves corresponding to the respective
point source configuration for each part, made a hardcopy of
the screen, and finally glued the sheets in the right order to
get a large pattem of about 1.2 x 0.8 m with approximately
107 dots.

Step 3: Photographic minification

The large patterns have to be reduced photographically in
order to get transparencies that then behave like any other
optical hologram. For this purpose we used an ordinary
amateur camera (film format 24 % 36 mm) and a high reso-
lution black-and-white negative film (e.g., Agfapan profes-
sional 25 ASA, resolution 350 lines/mm).

The exposure and the development time of the film was
chosen so that the photographic process is approximately
“digital” in order to get a point-by-point recording, i.e., each
dot gives a well-separated “hole” in the film emulsion. We
found the reduction 1 : 30 to 1 : 50 sufficient to get structures
that are still resolved on the film and already show diffraction
for light waves.

Step 4: The reconstruction

Holograms have many properties of a grating, and so the
reconstruction of the hologram images is similar to a diffrac-
tion experiment with a grating. The experimental setup is
described in many optics textbooks, including Hecht” s2

Figure 4 illustrates through photographs the results of the
reconstruction for some examples. Figure 4a represents the
reconstructed image of the hologram pattern from Fig. 3e,
and shows the surprising effect that only the zero and first
refraction orders appear. This proves that the simulation
process gencram a sinusoidal transmission structure of the
trmsparency This result is important from the technical
point of view and it simplifies application of the simulated
holograms in the teaching process. Furthermore it indicates
the possibility of producing sinusoidal diffraction structures
in a very simple way.

From the origin of the pattern in Fig. 3e (single point
source at infinity) one expects only one point at infinity, but
the reconstruction delivers two points—one at “plus™ and one
at “minus™ infinity. This ambiguity is due to the neglected
time dependence in the wave description. For example, in Eq.
(1) it is impossible to distinguish between “incoming™ and
“outgoing” waves. Therefore two images appear in the recon-
struction—a real and a virtual (conjugate) image.z'4

Figure 4b shows the reconstruction for the hologram
pattern in Fig. 3d (three-dimensional point arrangement,
tetrahedron). The three-dimensional character is demon-
strated by focusing on the top of the tetrahedron. The other
three point sources originally arranged in a plane parallel to
the hologram plane are out of focus, as expected. In Fig. 4c
we have chosen another camera position and another dia-
phragm. The view of the tetrahedron has changed. This
.change of the perspective is another test for the three-dimen-
sional character of the reconstructed images. In addition all
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points of the tetrahedron appear approximately in focus on
this photo. This effect indicates that the depth of focus
increases when the diameter of the dlaphragm decreases, an
observation well known from real holograms

Concluding Remarks

The simulation of holograms for simple point source
arrangements allows a step-by-step introduction to hologra-
phy and gives a deeper insight into the holographic recording
and reconstruction process. No special prerequisites are nec-
essary. The method only requires the mathematical descrip-
tion of waves in its simplest form. The applied computer
program is rather simple (some BASIC lines). Also, it is
possible to explain the holographic imaging process from a
very elementary point of view, based on Huygen's principle
alone;

Every simulated hologram represents a characteristic dot

distribution that is transformed into a respective hole distri-

bution through the photographic minification process. This
property allows the application of Huygens® principle: the
dots represent *frozen” single point sources and their distri-
bution represents the frozen wavefront. The holes on the
transparency can be regarded as single point sources that can

be reactivated. When light shines on the transparency, each

hole becomes a source of spherical wavelets and the envelope

of these wavelets represents the reactivated wavefront just

behind the hologram plane.

Unfortunately the simulation is limited to a small number
of point sources. Otherwise the calculation time becomes too
large. For more complicated object stmctures some pro-
posed computer-generated holograms are more conven-
ient, but less suited for an introductory course.
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Elfratum

In TPT’s February “AstroNotes” (page
93) a line of type was inadvertently
dropped. The sentence that begins at the
bottom of the first column should read,
“The value of density I used was the actual
count at the shortest distance counted di-

vided by nd , assuming the space is locally
flat.” Sorry about that.
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